Constraints on Dark Matter annihilations from reionization and heating of the intergalactic gas
نویسندگان
چکیده
Dark Matter annihilations after recombination and during the epoch of structure formation deposit energy in the primordial intergalactic medium, producing reionization and heating. We investigate the constraints that are imposed by the observed optical depth of the Universe and the measured temperature of the intergalactic gas. We find that the bounds are significant, and have the power to rule out large portions of the ‘DM mass/cross section’ parameter space. The optical depth bound is generally stronger and does not depend significantly on the history of structure formation. The temperature bound can be competitive in some cases for small masses or the hadronic annihilation channels (and is affected somewhat by the details of structure formation). We find in particular that DM particles with a large annihilation cross section into leptons and a few TeV mass, such as those needed to explain the PAMELA and FERMI+HESS cosmic ray excesses in terms of Dark Matter, are ruled out as they produce too many free electrons. We also find that low mass particles (. 10 GeV) tend to heat too much the gas and are therefore disfavored.
منابع مشابه
The impact of dark matter decays and annihilations on the formation of the first structures
We derive the effects of dark matter (DM) decays and annihilations on structure formation. We consider moderately massive DM particles (sterile neutrinos and light DM), as they are expected to give the maximum contribution to heating and reionization. The energy injection from DM decays and annihilations produces both an enhancement in the abundance of coolants (H2 and HD) and an increase of ga...
متن کاملIntergalactic medium heating by dark matter
We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction fabs ∼ 0.5 of their rest mass energy into the IGM; at lower redshifts this fraction becomes < ∼ 0.3 depending on the particle mass. The LDM particles can deca...
متن کاملImpact of dark matter decays and annihilations on reionzation
One of the possible methods to distinguish among various dark matter candidates is to study the effects of dark matter decays. We consider four different dark matter candidates (light dark matter, gravitinos, neutralinos and sterile neutrinos), for each of them deriving the decaying/annihilation rate, the influence on reionization, matter temperature and CMB spectra. We find that light dark mat...
متن کاملImpact of dark matter decays and annihilations on reionization
One of the possible methods to distinguish among various dark matter candidates is to study the effects of dark matter decays. We consider four different dark matter candidates (light dark matter, gravitinos, neutralinos and sterile neutrinos), for each of them deriving the decaying/annihilation rate, the influence on reionization, matter temperature and CMB spectra. We find that light dark mat...
متن کاملThe Effects of Photoionization on Galaxy Formation — I: Model and Results at z=0
We develop a coupled model for the evolution of the global properties of the intergalactic medium (IGM) and the formation of galaxies, in the presence of a photoionizing background due to stars and quasars. We use this model to predict the thermodynamic history of the IGM when photoionized by galaxies forming in a cold dark matter (CDM) universe. The evolution of the galaxies is calculated usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009